Exercise 2

A field $\mathbf{v}(x, y, z)$ is said to be irrotational if $[\nabla \times \mathbf{v}]=0$. Which of the following fields are irrotational?
(a) $v_{x}=b y \quad v_{y}=0 \quad v_{z}=0$
(b) $v_{x}=b x \quad v_{y}=0 \quad v_{z}=0$
(c) $v_{x}=b y \quad v_{y}=b x \quad v_{z}=0$
(d) $v_{x}=-b y \quad v_{y}=b x \quad v_{z}=0$

Solution

$\nabla \times \mathbf{v}$ is the curl of the vector field \mathbf{v}, and it is evaluated with the following determinant.

$$
\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

(a) $\quad \nabla \times \mathbf{v}=\left|\begin{array}{ccc}\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ b y & 0 & 0\end{array}\right|=0 \boldsymbol{\delta}_{1}-\left[0-\frac{\partial}{\partial z}(b y)\right] \boldsymbol{\delta}_{2}+\left[0-\frac{\partial}{\partial y}(b y)\right] \boldsymbol{\delta}_{3}=-b \boldsymbol{\delta}_{3}$
(b) $\quad \nabla \times \mathbf{v}=\left|\begin{array}{ccc}\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ b x & 0 & 0\end{array}\right|=0 \boldsymbol{\delta}_{1}-\left[0-\frac{\partial}{\partial z}(b x)\right] \boldsymbol{\delta}_{2}+\left[0-\frac{\partial}{\partial y}(b x)\right] \boldsymbol{\delta}_{3}=\mathbf{0}$
(c) $\nabla \times \mathbf{v}=\left|\begin{array}{ccc}\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ b y & b x & 0\end{array}\right|=\left[0-\frac{\partial}{\partial z}(b x)\right] \boldsymbol{\delta}_{1}-\left[0-\frac{\partial}{\partial z}(b y)\right] \boldsymbol{\delta}_{2}+\left[\frac{\partial}{\partial x}(b x)-\frac{\partial}{\partial y}(b y)\right] \boldsymbol{\delta}_{3}=\mathbf{0}$
(d) $\quad \nabla \times \mathbf{v}=\left|\begin{array}{ccc}\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -b y & b x & 0\end{array}\right|=\left[0-\frac{\partial}{\partial z}(b x)\right] \boldsymbol{\delta}_{1}-\left[0-\frac{\partial}{\partial z}(-b y)\right] \boldsymbol{\delta}_{2}+\left[\frac{\partial}{\partial x}(b x)-\frac{\partial}{\partial y}(-b y)\right] \boldsymbol{\delta}_{3}$ $=2 b \boldsymbol{\delta}_{3}$

Therefore, the vector fields in (b) and (c) are irrotational.

