Exercise 2

A field $\mathbf{v}(x, y, z)$ is said to be *irrotational* if $[\nabla \times \mathbf{v}] = 0$. Which of the following fields are irrotational?

(a) $v_x = by$ $v_y = 0$ $v_z = 0$ (b) $v_x = bx$ $v_y = 0$ $v_z = 0$ (c) $v_x = by$ $v_y = bx$ $v_z = 0$ (d) $v_x = -by$ $v_y = bx$ $v_z = 0$

Solution

 $\nabla \times \mathbf{v}$ is the curl of the vector field \mathbf{v} , and it is evaluated with the following determinant.

$$abla imes \mathbf{v} = egin{bmatrix} oldsymbol{\delta}_1 & oldsymbol{\delta}_2 & oldsymbol{\delta}_3 \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ v_x & v_y & v_z \end{bmatrix}$$

(a)
$$\nabla \times \mathbf{v} = \begin{vmatrix} \delta_{1} & \delta_{2} & \delta_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ by & 0 & 0 \end{vmatrix} = 0\delta_{1} - \left[0 - \frac{\partial}{\partial z}(by)\right]\delta_{2} + \left[0 - \frac{\partial}{\partial y}(by)\right]\delta_{3} = -b\delta_{3}$$

(b) $\nabla \times \mathbf{v} = \begin{vmatrix} \delta_{1} & \delta_{2} & \delta_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ bx & 0 & 0 \end{vmatrix} = 0\delta_{1} - \left[0 - \frac{\partial}{\partial z}(bx)\right]\delta_{2} + \left[0 - \frac{\partial}{\partial y}(bx)\right]\delta_{3} = \mathbf{0}$
(c) $\nabla \times \mathbf{v} = \begin{vmatrix} \delta_{1} & \delta_{2} & \delta_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ by & bx & 0 \end{vmatrix} = \left[0 - \frac{\partial}{\partial z}(bx)\right]\delta_{1} - \left[0 - \frac{\partial}{\partial z}(by)\right]\delta_{2} + \left[\frac{\partial}{\partial x}(bx) - \frac{\partial}{\partial y}(by)\right]\delta_{3} = \mathbf{0}$
(d) $\nabla \times \mathbf{v} = \begin{vmatrix} \delta_{1} & \delta_{2} & \delta_{3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -by & bx & 0 \end{vmatrix} = \left[0 - \frac{\partial}{\partial z}(bx)\right]\delta_{1} - \left[0 - \frac{\partial}{\partial z}(-by)\right]\delta_{2} + \left[\frac{\partial}{\partial x}(bx) - \frac{\partial}{\partial y}(-by)\right]\delta_{3}$
 $= 2b\delta_{3}$

Therefore, the vector fields in (b) and (c) are irrotational.